667 research outputs found

    Making, probing and understanding Bose-Einstein condensates

    Full text link
    Contribution to the proceedings of the 1998 Enrico Fermi summer school on Bose-Einstein condensation in Varenna, Italy.Comment: Long review paper with ~90 pages, ~20 figures. 2 GIF figures in separate files (4/5/99 fixed figure

    Ultracold neutral plasma expansion in two dimensions

    Full text link
    We extend an isothermal thermal model of ultracold neutral plasma expansion to systems without spherical symmetry, and use this model to interpret new fluorescence measurements on these plasmas. By assuming a self-similar expansion, it is possible to solve the fluid equations analytically and to include velocity effects to predict the fluorescence signals. In spite of the simplicity of this approach, the model reproduces the major features of the experimental data

    Fluorescence measurements of expanding strongly-coupled neutral plasmas

    Full text link
    We report new detailed density profile measurements in expanding strongly-coupled neutral plasmas. Using laser-induced fluorescence techniques, we determine plasma densities in the range of 10^5 to 10^9/cm^3 with a time resolution limit as small as 7 ns. Strong-coupling in the plasma ions is inferred directly from the fluorescence signals. Evidence for strong-coupling at late times is presented, confirming a recent theoretical result.Comment: submitted to PR

    Resource Allocation Among Agents with MDP-Induced Preferences

    Full text link
    Allocating scarce resources among agents to maximize global utility is, in general, computationally challenging. We focus on problems where resources enable agents to execute actions in stochastic environments, modeled as Markov decision processes (MDPs), such that the value of a resource bundle is defined as the expected value of the optimal MDP policy realizable given these resources. We present an algorithm that simultaneously solves the resource-allocation and the policy-optimization problems. This allows us to avoid explicitly representing utilities over exponentially many resource bundles, leading to drastic (often exponential) reductions in computational complexity. We then use this algorithm in the context of self-interested agents to design a combinatorial auction for allocating resources. We empirically demonstrate the effectiveness of our approach by showing that it can, in minutes, optimally solve problems for which a straightforward combinatorial resource-allocation technique would require the agents to enumerate up to 2^100 resource bundles and the auctioneer to solve an NP-complete problem with an input of that size

    Book Reviews

    Get PDF
    Equity, an Analysis of Modern Equity Problems Designed Primarily for Students. George L. Clark, SJ.D., Professor of Law, University of Missouri. E. W. Stephens Publishing Co., Columbia, Mo., igig. Pp. lii, 639

    On Fully Dynamic Graph Sparsifiers

    No full text
    We initiate the study of dynamic algorithms for graph sparsification problems and obtain fully dynamic algorithms, allowing both edge insertions and edge deletions, that take polylogarithmic time after each update in the graph. Our three main results are as follows. First, we give a fully dynamic algorithm for maintaining a (1±ϔ) (1 \pm \epsilon) -spectral sparsifier with amortized update time poly(log⁥n,ϔ−1)poly(\log{n}, \epsilon^{-1}). Second, we give a fully dynamic algorithm for maintaining a (1±ϔ) (1 \pm \epsilon) -cut sparsifier with \emph{worst-case} update time poly(log⁥n,ϔ−1)poly(\log{n}, \epsilon^{-1}). Both sparsifiers have size n⋅poly(log⁥n,ϔ−1) n \cdot poly(\log{n}, \epsilon^{-1}). Third, we apply our dynamic sparsifier algorithm to obtain a fully dynamic algorithm for maintaining a (1+Ï”)(1 + \epsilon)-approximation to the value of the maximum flow in an unweighted, undirected, bipartite graph with amortized update time poly(log⁥n,ϔ−1)poly(\log{n}, \epsilon^{-1})

    Experimental Evaluation of High Performance Integrated Heat Pump

    Get PDF
    Integrated heat pump (IHP) technology provides significant potential for energy savings and comfort improvement for residential buildings. In this study, we evaluate the performance of a high performance IHP that provides space heating, cooling, and water heating services. Experiments were conducted according to the ASHRAE Standard 206-2013 where 24 test conditions were identified in order to evaluate the IHP performance indices. An 8-in by 8-in Air Monitor Fan Evaluator is used to measure the volumetric flowrate of air discharged from the air handler unit (AHU) in order to evaluate the airside performance. Empirical curve fits of the unitñ€ℱs compressor maps are used in conjunction with saturated condensing and evaporating refrigerant conditions to deduce the refrigerant mass flowrate, which, in turn is used to evaluate the refrigerant-side performance. Heat pump (compressor, fans, and controls) and water pump power were measured separately per requirements of Standard 206. The system was charged per the system manufacturerñ€ℱs specifications. System test results are presented for each operating mode along with overall IHP performance metrics according to ASHRAE standard 206-2013. The paper ends with discussion on system operation and impact on typical energy consumption in residential buildings

    An agent-based approach to immune modelling

    Get PDF
    This study focuses on trying to understand why the range of experience with respect to HIV infection is so diverse, especially as regards to the latency period. The challenge is to determine what assumptions can be made about the nature of the experience of antigenic invasion and diversity that can be modelled, tested and argued plausibly. To investigate this, an agent-based approach is used to extract high-level behaviour which cannot be described analytically from the set of interaction rules at the cellular level. A prototype model encompasses local variation in baseline properties contributing to the individual disease experience and is included in a network which mimics the chain of lymphatic nodes. Dealing with massively multi-agent systems requires major computational efforts. However, parallelisation methods are a natural consequence and advantage of the multi-agent approach. These are implemented using the MPI library
    • 

    corecore